中国科学技术大学学报 ›› 2017, Vol. 47 ›› Issue (2): 117-128.DOI: 10.3969/j.issn.0253-2778.2017.02.003

• 原创论文 • 上一篇    下一篇

量子物质拓扑相的核磁共振量子模拟

罗智煌   

  1. 1.北京计算科学研究中心,北京 100094; 2.中国科学技术大学近代物理系,中国科学院微观磁共振重点实验室,安徽合肥 230026; 3.合肥微尺度物质科学国家实验室,量子信息与量子科技前沿协同创新中心,安徽合肥 230026
  • 收稿日期:2017-01-17 修回日期:2017-02-05 出版日期:2017-02-28 发布日期:2017-02-28
  • 通讯作者: 彭新华
  • 作者简介:罗智煌,男,1986年生,博士.研究方向:基于核磁共振系统的拓扑相量子模拟和拓扑量子计算实验研究.E-mail:lzh@csrc.ac.cn
  • 基金资助:
    国家重点基础研究发展(973)计划(2013CB921801),国家自然科学基金(11375167,11425523,11661161018),中国科学院战略先导科技专项B类(XDB01030400)资助

Quantum simulation of topological phases of quantum matter with nuclear magnetic resonance

LUO Zhihuang   

  1. 1. Beijing Computational Science Research Center, Beijing 100094, China; 2. Department of Modern Physics, and CAS Key Laboratory of Microscale Magnetic Resonance, University of Science and Technology of China, Hefei 230026, China; 3. Hefei National Laboratory for Physical Sciences at the Microscale, and Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China
  • Received:2017-01-17 Revised:2017-02-05 Online:2017-02-28 Published:2017-02-28

摘要: 拓扑相是一类不能由经典朗道对称破缺理论描述的奇特物质态.这种态具有一些有趣的性质,如依赖于拓扑流形的基态简并度、准粒子分数统计和拓扑纠缠熵等.拓扑相的性质研究在凝聚态物理中本身具有重要意义,如促进新型材料的发现.另一方面,拓扑相提供了一种天然的无噪声介质,在容错量子计算领域也有着潜在的应用.然而,受限于当前苛刻的实验条件和可控的实验手段,在真实体系中观测并探索拓扑相的性质是一件困难的事情.量子模拟用一个可控的量子系统模拟复杂的或难以观测的物理现象,为我们研究拓扑相提供了有力手段.核磁共振体系作为量子模拟的物理实现平台之一,在多量子比特实验中具有成熟的控制技术和精确的测量手段,是一个很好的测试平台.本文首先介绍拓扑相的基本概念和性质,回顾核磁共振在量子模拟中的应用,然后讨论基于该体系完成的关于拓扑相量子模拟的几个实验工作,最后给出总结并展望此研究领域的前景.

关键词: 核磁共振, 量子模拟, 拓扑相, 拓扑量子相变, 拓扑量子计算

Abstract: Topological phases are exotic states of quantum matter which are beyond the usual symmetry description. These phases have some interesting properties, such as robust ground state degeneracy that depends on the surface topology, quasiparticle fractional statistics, topological entanglement entropy, etc. Topological phases not only play a significant role in the basic scientific research of condensed matter physics, but also provide a natural medium for fault-tolerant quantum computation. Quantum simulation suggests that the complicated or inaccessible physical phenomena can be simulated by a controlled quantum system, which will provide a powerful means to explore topological phases and their topological properties. Nuclear magnetic resonance, as one physical implementation of quantum simulation, is a good test platform due to its sophisticated control and precise measurement in multi-qubit experiments. In this paper, topological phases and nuclear magnetic resonance quantum simulator are reviewed, and three related experiments on quantum simulation of topological phases are introcluced. Finally, a summary and an outlook towards topological quantum computation are given.

Key words: nuclear magnetic resonance, quantum simulation, topological phase, topological quantum phase transition, topological quantum computation