中国科学技术大学学报 ›› 2014, Vol. 44 ›› Issue (2): 147-152.DOI: 10.3969/j.issn.0253-2778.2014.02.010

• 原创论文 • 上一篇    下一篇

基于FPGA的合成孔径超声成像波束合成设计

王东亚   

  1. 1.中国科学技术大学电子科学与技术系,安徽合肥 230027;2.合肥工业大学医学工程学院,安徽合肥 230009
  • 收稿日期:2013-03-11 修回日期:2013-05-10 出版日期:2014-02-28 发布日期:2014-02-28
  • 通讯作者: 彭虎
  • 作者简介:王东亚,男,1990年生,硕士生. 研究方向:生物医学工程. E-mail:mwkea@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(60871087,61172037),国家重大科学仪器设备开发专项(2012YQ200224,2013YQ20060708)资助.

A synthetic aperture beam-former for ultrasound imaging based on FPGA

WANG Dongya   

  1. 1.Department of Electronic Science and Technology, University of Science and Technology of China, Hefei 230027, China; 2.School of Medical Engineering, Hefei University of Technology, Hefei 230009, China
  • Received:2013-03-11 Revised:2013-05-10 Online:2014-02-28 Published:2014-02-28

摘要: 合成孔径超声成像,因其可以利用少量超声传感器得到高分辨率及高对比度超声图像而成为现代数字医学超声成像常采用的方法.传统合成孔径方法的复杂性限制了实时成像系统的成像速度.对比传统的定制目标区域及非均匀采样的成像方法,利用高速数字电路设计出了应用于多阵元合成孔径超声成像系统的均匀采样波束合成算法,并利用现场可编程门阵列(FPGA)技术进行硬件实现.使用Altera公司的Cyclone Ⅱ系列EP2C8Q208C8芯片,利用同步动态随机存储器(SDRAM)存储回波数据,数据经延时叠加及加权处理后通过USB送入PC端成像.系统测试结果表明:采用流水线结构及并行数字电路,FPGA可以在高速时钟下完成合成孔径超声成像的波束合成算法,结果精确高效,可以运用于实时成像系统.

关键词: 超声成像, 波束形成, 延时叠加, FPGA

Abstract: Synthetic aperture ultrasound imaging is often used in modern digital medical ultrasound imaging for its high-resolution and high-contrast images with a small number of transducers. But the traditional synthetic aperture method is very complex and limited in real-time imaging. Contrast to the non-uniformly sampling data imaging from customized target area, a beam-forming algorithm of the uniformly sampling system applied to a multi-element synthetic aperture ultrasound imaging system using a high speed digital circuit was designed and implemented in a hardware circuit based on field programmable gate array(FPGA).The system was composed of one FPGA EP2C8Q208C8 of Cyclone Ⅱ series from Altera corporation and one synchronous dynamic random access memory (SDRAM) chip to store echo data, which were delay superimposed and weighted and sent to PC via USB. With the pipeline architecture and the parallel nature of FPGA, the beam-forming algorithm was implemented. The test results demonstrate that the system is accurate and effective and can be applied to real-time ultrasound imaging.

Key words: ultrasound imaging, beam-former, delay superimpose, field programmable gate array (FPGA)