中国科学技术大学学报 ›› 2014, Vol. 44 ›› Issue (5): 374-381.DOI: 10.3969/j.issn.0253-2778.2014.05.003

• 原创论文 • 上一篇    下一篇

KMAX实验装置中的重点研究问题

孙 玄   

  1. 中国科学技术大学近代物理系,安徽合肥 230026
  • 收稿日期:2013-11-18 修回日期:2013-12-09 出版日期:2014-05-31 发布日期:2014-05-31
  • 通讯作者: 孙玄
  • 作者简介:孙玄(通讯作者),2011年中组部首批“青年千人计划”入选者,曾获2006年美国Los Alamos National Laboratory Directors Fellowship,从事等离子体实验方面的研究.在国际等离子体核心期刊上发表过30多篇文章,其中Nature Science(第二作者)1篇,Phys Rev Lett 7篇(4篇第一作者).工作涉及Helicon Double Layer的产生和激光荧光谱对离子速度和温度的测量,drift-Alfven波的激发等,曾涉及过空间等离子体数据处理的工作,研究地磁暴产生后的离子温度变化,并且从事过磁场重联、聚变装置FRC等的研究.目前工作重点和兴趣是推动串节磁镜物理研究和发展托卡马克诊断,如用于测量q值的高速尘埃注入等.E-mail: xsun@ustc.edu.cn
  • 基金资助:
    中国科学技术大学985工程二期,科技部ITER-CN专项(2013GB112007)资助.

Research activities in Keda axisymmetric tandem mirror experiment

SUN Xuan   

  1. Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
  • Received:2013-11-18 Revised:2013-12-09 Online:2014-05-31 Published:2014-05-31

摘要: 磁镜或类磁镜结构的装置是实现聚变能源商业化的一支潜在力量.然而,轴向粒子损失和MHD(magnetohydrodynamics)不稳定性制约了磁镜的发展.现代磁镜理论提出了使用串节磁镜联合动理学stabilizer的解决方案.由一个中心磁镜两个子磁镜组成的KMAX装置将探索在全对称磁场结构下上述理论的可行性.同时,我们结合旋转磁场(RMF)在Rotamak和场反装置的成功经验,提出一种利用RMF捕获逃逸粒子的新的两端磁镜改性方法.这种方法区别于使用单一电场约束逃逸离子的一般串节磁镜.除此之外,KMAX也将开展与空间等离子体相关的磁场重联、Alfven波加热等基础等离子体现象研究.

关键词: 磁镜, 等离子体约束, 离子回旋波加热, 湍流, MHD(magnetohydrodynamics)不稳定

Abstract: Magnetic mirror and its derivatives hold the key to commercializing fusion energy. However, the axial particle loss and MHD (magnetohydrodynamics) interchange mode have impeded the development of mirror programs. Recently, a tandem mirror in combination with kinetic stabilizer has been proposed to cope with these two major hurdles. KMAX (Keda mirror with axisymmetricity), consisting of one central cell and two plug cells, is being built to fully investigate particle confinement and MHD instabilities. A new approach based on the success of RMF (rotating magnetic field) application in FRCs will be employed to extend the research area of tandem mirror. Despite fusion relevant experiments, KMAX will be also devoted to laboratory simulated space plasma, such as magnetic reconnection, Alfven wave heating and other fundamental processes in space plasmas.

Key words: magnetic mirror, plasma confinement, ICRH (ion cyclotron resonance heating), turbulence, MHD instability