中国科学技术大学学报 ›› 2015, Vol. 45 ›› Issue (5): 353-358.DOI: 10.3969/j.issn.0253-2778.2015.05.002

• 原创论文 • 上一篇    下一篇

从头计算确定FeAs超导层能够作为锂离子电池的新型负极材料

张 猛   

  1. 中国科学技术大学国家同步辐射实验室,安徽合肥 230029
  • 收稿日期:2015-04-02 修回日期:2015-04-21 出版日期:2015-05-31 发布日期:2015-05-31
  • 作者简介:ZHANG Meng, male, born in 1988, master. Research field: Lithium ion batteries. E-mail: lanben@mail.ustc.edu.cn

An ab initio study for electrochemistry: Superconductor layer FeAs as a novel anode material for lithium ion batteries

ZHANG Meng   

  1. National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
  • Received:2015-04-02 Revised:2015-04-21 Online:2015-05-31 Published:2015-05-31
  • Contact: CHU Wangsheng

摘要: 通过第一性原理计算发现这些传统的铁基超导层状材料(FeAs)不仅十分适合作为锂离子电池负极,同时它们还具有1 044 mAh/g 的高理论容量,几乎是传统石墨负极材料的三倍容量.计算证实,在第一次充电过程中,Li/FeAs 将首先通过两步转换反应形成最终产物Li3As和Fe.在接下来的放-充电过程中则主要通过As和锂离子之间的合金化反应来实现电池的可持续充放电,其电化学平台分别为077 V 和166 V,这与硅负极材料的合金化反应机理十分类似.鉴于这类材料高的能量密度及好的动力学性能,我们有理由相信铁基超导层状材料可以作为一种复杂功能化的电极材料而应用于未来的电池储能系统.

关键词: 超导层, 锂离子电池, 密度泛函理论, 相对能量

Abstract: A potential application of Fe-based layers (FeAs, FeSe) as a new promising anode material was proposed in the fields of second batteries by systematic first-principles calculations. The calculation results indicate that those conventional superconductor layers, such as FeAs, can deliver a theoretical capacity of 1 044 mAh/g, three times higher than that of the graphite-type anode. Further dynamic investigation suggests that Li/FeAs experiences a conversion reaction forming Li3As and Fe through a two-step reaction in the first cycle. In the following cycles, Li-ion reversibly intercalates into arsenic at 077 V or deintercalates from Li3As at 116 V, which is similar to the lithiation/de-lithiation mechanism of silicon anode materials. Based on their high energy density and good dynamic mechanism, these superconductor layers are thought to be a complex functional electrode candidates for future large-energy batteries systems.

Key words: superconductor layer, lithium-ion battery, density functional theory, relative energy