中国科学技术大学学报 ›› 2020, Vol. 50 ›› Issue (9): 1193-1217.DOI: 10.3969/j.issn.0253-2778.2020.09.001

• 综述 •    下一篇

磁约束核聚变装置等离子体与壁相互作用研究简述

胡建生   

  1. 中国科学院合肥物质科学研究院等离子体物理研究所,安徽合肥 230031
  • 收稿日期:2020-06-20 修回日期:2020-07-25 出版日期:2020-09-30 发布日期:2020-09-30
  • 通讯作者: 胡建生
  • 作者简介:胡建生(通讯作者),中国科学院等离子体物理研究所研究员,国家杰出青年科学基金获得者,国家“万人计划”科技创新领军人才,中科院关键技术人才,国家重点研发计划项目负责人.获安徽省创新争先奖、中科院院长奖优秀奖、安徽省优秀博士论文奖、IOP出版集团2018年中国作者论文高引奖,并作为骨干获得国家科技进步奖创新团队奖、中科院杰出科技成就奖等奖项.1994年在西安交通大学物理电子与真空器件专业获得学士学位,1998年在等离子体所核能科学与工程专业获得硕士学位,2008年在等离子体所等离子体物理专业获得博士学位.长期从事磁约束核聚变等离子体与壁相互作用研究,发表160多篇SCI论文,其中以第一或者通讯作者在Phys. Rev. Lett.、Nucl. Fusion,J. Nucl. Mater.等核心期刊上发表论文七十多篇.E-mail: hujs@ipp.ac.cn
  • 基金资助:
    国家杰出青年科学基金(11625524),国家重点研发计划项目(2017YFA0402500)资助.

Brief review to the interactions into plasma and walls in magnetic controlled fusion devices

HU Jiansheng   

  1. Institute of Plasma Physics,Hefei Institutes of Physical Science,Chinese Academy of Sciences,Hefei 230031,China
  • Received:2020-06-20 Revised:2020-07-25 Online:2020-09-30 Published:2020-09-30

摘要: 可控聚变能具有安全、清洁、燃料丰富等优点,是解决人类未来能源问题的主要选择之一.在磁约束核聚变装置中,来自高温等离子体的强热流、强粒子流与直接面对等离子体的器壁之间产生的强烈相互作用,不仅会导致第一壁损伤,产生杂质,污染等离子体,引起等离子体能量辐射损失与等离子体约束性能降低,同时滞留在壁上的燃料粒子再循环直接影响等离子体密度控制.稳态控制等离子体与壁相互作用对于实现长脉冲高参数的等离子体至关重要,其主要研究内容包括面对等离子体壁材料的选择及其表面处理以控制燃料粒子再循环与杂质产生,控制来自等离子体的强粒子流和热流以减少壁材料损伤,以及发展高效冷却结构以快速移除沉积在壁上的高热负载等.经过数十年发展,特别在我国EAST超导托卡马克上,研究了石墨、钨、铍、钼等壁材料与结构,发展了壁表面清洗与涂覆改性技术,提出了多种控制等离子体热流的先进方法,初步开展了流动液态金属壁的研究,取得了重要进展,有效控制等离子体与壁相互作用,促进了长脉冲高参数等离子体的实现与性能提高.针对具有更高热负荷、更长脉冲以及高能量中子辐照等特点的长时间不间断运行的未来聚变堆,等离子体与壁相互作用稳态控制仍然面临严峻挑战.

关键词: 磁约束核聚变, 等离子体与壁相互作用, EAST超导托卡马克

Abstract: Controllable fusion energy, with its advantages of safety, cleanness and abundant fuel source, is considered one of the main alternatives for humans to solve the energy problem in the future. In a magnetic confinement fusion device, the high heat and particle flux released from high temperature plasma would strongly interact with the plasma facing components (PFCs). The interaction would damage the PFCs and produce impurities that degrade plasma confinement. Meanwhile, the increased recycling of the particles trapped on the walls would affect the control of plasma density. The control of the interaction between the plasma and walls is of vital importance to the achievement of long pulse plasmas with high parameters. The research efforts in this area have mainly focused on the choice of suitable plasma facing materials, effective treatment of PFCs surface, reduction of particles and high heat flux released from plasma, and increasing heat exhaust with the help of developing efficient cooling structures of PFCs. After decades of research, especially in EAST superconducting tokamak in China, a series of great advances have been made. The advantages of wall materials, such as graphite, tungsten, beryllium and molybdenum, have been realized; a few effective methods for wall surface cleaning and coating have been developed; a variety of advanced methods to reduce the heat flux released from plasma have been successfully explored; various structures of PFCs to increase heat exhaust have been designed and tested. The results of these investigations have been successfully explored in EAST, effectively promoting the achievement of the world record of high confinement mode plasma with long durations, more than 100s. The control of the interaction between plasma and walls is still facing big challenges for the future fusion reactors with a high energy neutron irradiation, a much higher heat load and much longer plasma pulse than that in the present tokamaks.

Key words: magnetic controlled fusion, interaction into plasma and walls, EAST superconducting tokamak