中国科学技术大学学报 ›› 2021, Vol. 51 ›› Issue (11): 822-830.DOI: 10.52396/JUST-2021-0126

• 研究论文 • 上一篇    下一篇

主族s区金属Mg电催化N2还原反应的第一性原理计算研究

杨康1, 王长来1,3, 邓希4, 陈乾旺1,2*   

  1. 1.合肥微尺度物质科学国家研究中心,中国科学技术大学材料科学与工程系,安徽合肥 230026;
    2.中国科学院合肥物质科学研究院,强磁场安徽省实验室,安徽合肥 230031;
    3.香港城市大学材料科学与工程系,超金刚石及先进薄膜研究中心,香港 999077;
    4.中国科学技术大学化学与材料科学学院,安徽合肥 230026
  • 收稿日期:2021-05-07 修回日期:2021-06-29 出版日期:2021-11-30 发布日期:2022-01-13
  • 通讯作者: *E-mail:cqw@ustc.edu.cn

Tuning main-group s-block metal Mg as a promising single-atom electrocatalyst for N2 fixation: A DFT study

YANG Kang1, WANG Changlai1,3, DENG Xi4, CHEN Qianwang1,2*   

  1. 1. Hefei National Laboratory for Physical Sciences at the Microscale, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China;
    2. The Anhui High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China;
    3. Department of Materials Science and Engineering, Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong 999077, China;
    4. School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
  • Received:2021-05-07 Revised:2021-06-29 Online:2021-11-30 Published:2022-01-13
  • Contact: * E-mail: cqw@ustc.edu.cn

摘要: 电催化N2还原反应(NRR)可以在温和的条件下利用可再生的电力将氮气和质子从电解质水溶液转化为氨,被认为是一种非常有前景的替代哈伯法合成氨技术.但是这项技术也面临巨大的挑战,因为N2分子中的N≡N键非常牢固,需要高活性的催化剂才能将其断裂.和过渡金属相比,主族s区金属在NRR中很少被研究.本文采用第一性原理计算的方法,发现氧掺杂的石墨烯锚定的镁单原子催化剂(Mg-O4)是一种高活性的NRR电催化剂.理论计算结果表明,N2分子能有效地被Mg-O4活化,并通过非解离交替机制被还原成NH3.此外,分子动力学模拟结果显示Mg-O4具有高的稳定性.

关键词: 电催化N2还原反应, 主族金属, 单原子催化剂, 第一性原理计算

Abstract: The electrocatalytic nitrogen reduction reaction (NRR) can transform nitrogen and protons from aqueous electrolytes to ammonia by using renewable electricity under ambient conditions, which is a promising technology to replace the Haber-Bosch process. However, this technology is extremely challenging as it requires highly active electrocatalysts to break the stable triple-bonds of N2.With p bands,main-group s-block metals have been rarely explored in NRR compared with transition metals.Herein, we employ first-principles calculations to propose a Mg single atom catalyst as a promising high-performance electrocatalyst for NRR, where Mg atom is coordinated with four oxygen atoms within graphene (Mg-O4). Our results reveal that N2 can be efficiently activated on Mg-O4 and reduced into NH3 through the alternating mechanism. Moreover, ab initio molecular dynamics simulations demonstrate the Mg-O4 structure has high stability.

Key words: electrocatalytic N2 reduction reaction, main-group metal, single atom catalyst, first-principles calculations

中图分类号: