中国科学技术大学学报 ›› 2015, Vol. 45 ›› Issue (5): 345-352.DOI: 10.3969/j.issn.0253-2778.2015.05.001

• 原创论文 •    下一篇

氧硫化碳在230 nm附近的三重态解离通道

高 治   

  1. 合肥微尺度物质科学国家实验室,中国科学技术大学化学物理系,安徽合肥 230026
  • 收稿日期:2015-01-16 修回日期:2015-04-21 出版日期:2015-05-31 发布日期:2015-05-31
  • 通讯作者: 周晓国
  • 作者简介:高治,男,1989年生,硕士生. 研究方向:化学反应动力学. E-mail: gzsport@mail.ustc.edu.cn
  • 基金资助:
    国家自然科学基金(21373194), 国家重点基础研究发展(973)计划(2013CB834602)资助.

Triplet dissociation pathway of carbonyl sulfide at 230 nm

GAO Zhi   

  1. Hefei National Laboratory for Physical Sciences at Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China
  • Received:2015-01-16 Revised:2015-04-21 Online:2015-05-31 Published:2015-05-31

摘要: 氧硫化碳(OCS)在吸收230 nm左右的光子后迅速解离,生成的CO(XΣ+g,v=0,J=42~65)碎片通过(2+1)共振增强多光子电离后检测. 通过对CO+进行速度成像,获得了CO+的平动能布居和角度分布.除了主要的单重态通道S(D)+CO(XΣ+g,v=0)以外,三重态解离通道形成的S(3P)原子也被观测到,其通道分支比约为05%,并且随CO的转动激发而略增加.结合最新计算的OCS电子激发态势能面,获得了OCS的三重态解离机理:OCS吸收230 nm光子被激发至AA′态,进而通过旋轨耦合至b3A″态解离.

关键词: 氧硫化碳(OCS), 光解离, 共振增强多光子电离, 通道分支比, 离子速度成像

Abstract: Carbonyl sulfide (OCS) was excited and dissociated at ~230 nm, and the CO(XΣ+g,v=0,J=42~65) fragment was detected by using (2+1) resonance-enhanced multiphoton ionization at 229825~230000 nm. From the velocity map image of CO+, the kinetic energy and angular distributions of CO fragments were directly obtained. Besides the dominated channel of S(D)+CO(XΣ+g,v=0), S(3P) atom was also observed in photodissociation of OCS at 230 nm. The branching ratio of the S(3P) channel was about 05%, and slightly increased with the rotational excitation of CO fragment from J=56 to 65. With the aid of the recent high-level potential energy surfaces of the excited electronic states of OCS, the S(3P) formation mechanism was proposed. Once absorbing an ultraviolet photon at ~230 nm, the excited OCS in AA′ state is produced initially, and then dissociates to yield S(3P) atom via spin-orbital coupling to b3A″ state.

Key words: carbonyl sulfide (OCS), photodissociation, resonance enhanced multiphoton ionization, branching ratio, ion velocity imaging