中国科学技术大学学报 ›› 2019, Vol. 49 ›› Issue (11): 861-872.DOI: 10.3969/j.issn.0253-2778.2019.11.001

• 原创论文 •    下一篇

单自旋量子精密测量——基于钻石量子传感器的微观磁共振

程春阳   

  1. 中国科学技术大学近代物理系,中国科学院微观磁共振重点实验室, 合肥微尺度物质科学国家研究中心,安徽合肥 230026
  • 收稿日期:2019-05-10 修回日期:2019-06-12 出版日期:2019-11-30 发布日期:2019-11-30
  • 通讯作者: 石发展
  • 作者简介:程春阳,男,1994年生,硕士生. 研究方向:量子精密测量. E-mail:ccy2012@mail.ustc.edu.cn
  • 基金资助:
    国家重点研发计划(2016YFA0502400),国家自然科学基金重大研究计划(91636217),国家自然科学基金优秀青年科学基金(11722544),中国科学院青年创新促进会优秀会员基金(2015370),中央高校基本科研业务费专项资金资助.

Single spin quantum metrology: Microscopic magnetic resonance based on quantum diamond sensor

CHENG Chunyang   

  1. Department of Modern Physics, Chinese Academy of Sciences Key Laboratory of Microscale Magnetic Resonance,
  • Received:2019-05-10 Revised:2019-06-12 Online:2019-11-30 Published:2019-11-30

摘要: 量子精密测量作为基于量子力学原理发展起来的精密测量技术,正成为各学科发展的重要推动力.此处所谓的单自旋量子精密测量一层含义是指以金刚石中的一类点缺陷——氮-空位色心单自旋为量子信息载体,通过光探测磁共振方式对其进行检测;另一层面是指通过微波射频的操控将氮-空位色心单自旋制备成量子传感器,实现高灵敏度高空间分辨率的微观磁共振,甚至可以达到对单电子/单核自旋检测的水平.这一技术用量子传感代替电学探测模式,将传统磁共振的检测能力在空间上从毫米推进到纳米尺度,分子数从数十亿推进到单个分子水平.基于氮-空位色心的量子精密测量技术仍处于快速发展阶段,其正在被应用于二维材料磁性研究、超导、单分子结构、单细胞磁检测等方向,有望为物理、化学、生命科学甚至医学等领域的发展提供重要支撑.本文首先介绍单自旋量子精密测量的基本概念和原理,接着着重介绍本课题组近年基于氮-空位色心的量子精密测量相关实验研究,包括单分子顺磁共振、纳米核磁共振、基础物理等方面的相关进展及未来研究展望.

关键词: 量子精密测量, 氮-空位色心, 量子传感器, 单自旋, 微观磁共振

Abstract: As a precision measurement technology based on the principle of quantum mechanics, quantum metrology is becoming an important driving force for the development of various disciplines. The so-called single-spin quantum metrology here has two connotations. One is to use nitrogen-vacancy (NV) center, a kind of point defect in diamond, as single spin quantum information carrier, which could be accessed by optically detected magnetic resonance (MR). The other aspect refers to utilizing NV center as a single-spin quantum sensor through the manipulation of microwave/radio frequency, achieving microscopic MR with high sensitivity and high spatial resolution, and even reaching the level of single electron/nuclear spin detection. This technology replaces the traditional coil detection with quantum sensing, pushing MR study from macroscale to nanoscale, and the sample requirement from billions to single molecule level. Quantum metrology based on NV center is still in the stage of rapid growth. It has been applied in the research of two-dimensional material magnetism, superconductivity, single molecular structure and single cell magnetic detection. It is expected to provide significant support for the development of physics, chemistry, life science and even medicine. In this review, the basic concept and principle of single spin quantum metrology were introduced, and then the recent experimental progress of our group was elaborated on

Key words: quantum metrology, nitrogen-vacancy center, quantum sensor, single spin, microscopic magnetic resonance