中国科学技术大学学报 ›› 2020, Vol. 50 ›› Issue (5): 559-569.DOI: 10.3969/j.issn.0253-2778.2020.05.002

• 论著 • 上一篇    下一篇

基于CloudSat资料的洋面非降水暖云空间分布及云内液相水含量垂直结构

尉钧博,丁于皓,劳坪,刘奇   

  1. 中国科学技术大学地球和空间科学学院, 安徽合肥 230026
  • 收稿日期:2018-12-29 修回日期:2019-05-10 接受日期:2019-05-10 出版日期:2020-05-31 发布日期:2019-05-10
  • 通讯作者: 刘奇
  • 作者简介:尉钧博,男,1994年生,硕士生.研究方向:洋面暖云的分布与云微物理参数的垂直结构. E-mail:xihepu@mail.ustc.edu.cn

Spatial distributions of oceanic non-precipitating warm clouds and in-cloud vertical structures of liquid water content as revealed by CloudSat measurements

WEI Junbo, DING Yuhao, LAO Ping, LIU Qi   

  1. School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China
  • Received:2018-12-29 Revised:2019-05-10 Accepted:2019-05-10 Online:2020-05-31 Published:2019-05-10

摘要: 利用CloudSat卫星搭载的云廓线雷达(cloud profiling radar,CPR)2007~2009年三年的观测资料,针对洋面非降水暖云有效廓线样本,分别对积云(Cu)、层云(St)、层积云(Sc)和高积云(Ac)等四类云型,分析了其在全球尺度的水平分布特征,并在此基础上特别考察了非降水暖云液相水含量(liquid water content,LWC)的垂直变化特性.研究发现,洋面非降水暖云中四类云型的样本占比从高至低依次为层积云76.46%、层云12.48%、积云7.45%、高积云3.61%,层积云在非降水暖云的总覆盖面积中占据主导作用.在样本量全球标准化后,四类云型的空间分布形式存在较大差异,层积云与层云主要集中于北美和南美大陆西侧近岸海域,积云与高积云则广泛分布于太平洋、大西洋和印度洋的洋面上,且高值位于大洋中部.尽管四类云型的生消机制和宏观形态存在很大差异,但不同云型LWC呈现出较为相似的垂直结构.对经几何厚度标准化后的LWC廓线进行比较,发现在四类典型非降水暖云中,由云底到云顶LWC一致呈现为先增后减的规律.云体中下部向上近似线性递增的结构基本反映了LWC的准绝热增长特性,而云体上部及云顶附近的向上递减结构明确反映了云顶普遍受到上空干空气侵入混合的强烈影响,由此导致了自云顶向下逐层衰减的云水蒸发.以云高和云厚两个参数分类的廓线统计结果还显示,LWC垂直结构受到云顶高度和云层几何厚度的影响.云层几何厚度增大时,LWC由云底到云中的递增结构会变厚,由云中到云顶的递减结构会变薄.几何厚度相同但云顶高度不同的云层,其LWC含量也有所不同,这表明对于特定云型,在生成及发展过程中,不同阶段所对应的LWC廓线结构也存在差异.

关键词: 非降水暖云, 暖云类型, 全球分布, 液相云水含量, 垂直结构

Abstract: Using cloud profile radar (CPR/CloudSat) data from 2007 to 2009, the horizontal distributions of non-precipitating warm clouds over global oceans were examined and the vertical variation characteristics of LWC (liquid water content) were analyzed for four major warm cloud types, i.e., cumulus (Cu), stratus (St), stratocumulus (Sc) and altocumulus (Ac). It was found that among all oceanic non-precipitating warm clouds, the proportion of each type is stratocumulus (76.46%), stratus (12.48%), cumulus (7.45%) and altocumulus (3.61%). Stratocumulus plays a dominant role in the total coverage area of non-precipitating warm clouds over oceans. After the global normalization of the sample volume, there are also large differences in the spatial distribution patterns among the four types. Stratocumulus and stratus are mainly concentrated in coastal waters near the west of North and South American continents, while cumulus and altocumulus clouds are widely distributed on the Pacific Ocean, Atlantic Ocean and Indian Ocean, and high occurrences generally appear in the central part of each ocean. In spite of distinct formation regimes and morphologies, the vertical structures of LWC show similar patterns among the four types. From the cloud bottom up to cloud top, LWC was found to increase first and then decrease. The approximately linearly increasing structure in the lower and middle part of the cloud column reflects the quasi-adiabatic growth characteristics of LWC. The upward decreasing structure near the upper part and near cloud top clearly reflects that cloud top is generally strongly affected by the intrusion of overhead dry air. The resulting evaporation of cloud water attenuates heavily downward from the cloud top. The LWC vertical structure was found to be affected by cloud top height and cloud thickness. As cloud thickness increases, the upward increasing part becomes thicker, while the upward decreasing part becomes thinner. Clouds with the same thickness but different cloud top heights also have different LWC structures. This indicates that for a particular type of the clouds, there are differences in the LWC structures corresponding to different periods during the cloud’s generation and development process.

Key words: non-precipitating warm cloud, warm cloud type, global distribution, liquid water content, vertical structure

中图分类号: